
	 	 	

Jaga Software documentation July 2016	 	 1	
	

JAGA software Python open source

v.4.1c

1. Install Anaconda Python:

Install the Anaconda Python distribution, which contains Python and other packages we
depend on (matplotlib, numpy).

• Find Anaconda at https://www.anaconda.com/download/
Use the Python 2.7 distribution
See our document how to install anaconda

• After installation, find where Anaconda is installed, run

o For Windows

 [path to Anaconda]\python jaga_display.py
o For Linux

 [path to Anaconda]/python jaga_display.py

• If you add the Anaconda directory to your execution path you can just type
 python jaga_display.py

2. Python codes for capturing JAGA data without display:

• Go to the directory : cd ~/Directory_Name/Jaga_Python
• Type in the directory >> python capture.py

3. Python codes for displaying and capturing JAGA data:

• Type
 python jaga_display.py
• For more options type
 python jaga_display.py --help
• For example, to display and capture data from two JAGA devices:
 python jaga_display.py –-num_devices 2

	 	 	

Jaga Software documentation July 2016	 	 2	
	

4. Output file:

The output file name will be like yyyy-mm-dd_HH-MM-SS_jaga.dat and will be saved into a
subdirectory “JAGA_data” created under the directory you ran jaga_display.py

• The output data from JAGA16 (our open data format) is a stream of binary data that

contains Headers (packet info and hardware settings) + neural recording data.

• Note: If your file is really long, you can truncate it by typing
>> split –b 1396* multiple_integer your_filename your_outputfile (Each of our packet is 1396 bytes,
so, you will need to split the file into each with multiple of 1396 bytes.
e.g. >> split –b 1396000 your_filename smaller_file returns smaller_filea, smaller_fileb,
smaller_filec, …, smaller_fileaa with each 1396000 bytes.

• The JAGA data is recorded as digital samples from an ADC (analog to digital converter) with
16-bit resolution, with values ranging from 0-65535. 0 μV input leads to the ADC value of
32768 (half of 65535) ± a small channel-specific offset.

5. Generating timestamps for obtained neural recording data

• data2csv.py generates by default timestamps (in ISO time format) for each sample in the

data (each channel in one row)

>> python data2csv.py yyyy-mm-dd_HH-MM-SS_jaga.dat > output_filename.csv

• If you want to generate timestamps as Epoch time format more readable in MATLAB (a

floating number in seconds since Unix Epoch (1970-01-01 00:00:UTC) to microsecond
precision)
>> python data2csv.py --matlab yyyy-mm-dd_HH-MM-SS_jaga.dat > output.csv

• To obtain packet statistics (packet drop rate)
>>python file_stats.py yyyy-mm-dd_HH-MM-SS_jaga.dat

• To display the neural data in timestamps in a matlab file.
>>run jaga_csv_read.m and import output.csv into this .m file.

• To display the neural data with timestamps & plot fft in a matlab file.
>>run jaga_csv_read_fft.m and import output.csv into this .m file.

6. Simple viewing of neural recording data with sample counter (no time stamps)

This is a quick way to view the neural recording without converting the counter to timestamps

• generate_jaga_data_array.m generates a MATLAB vector array for all channels without
timestamps. This simple approach ignores the data gap, since you did not properly

	 	 	

Jaga Software documentation July 2016	 	 3	
	

incorporate timestamps, however you can quickly view what you recorded post-data
acquisition.

• If (for example), you want to plot just the ith channel,
 plot(data_array (:,i))

7. Trouble Shooting: Are you a Mac user?

Error: Files are not written on disk or display does not occur

• Check your computer is accepting jaganet by typing

>> ifconfig

The output should contain the line: inet 192.168.8.100 netmask 0xffffff00 broadcast
192.168.8.255. If you cannot find this line, the computer is not listeing to jaganet.

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=10b<RXCSUM,TXCSUM,VLAN_HWTAGGING,AV>
 ether ac:87:a3:1d:50:fc
 nd6 options=201<PERFORMNUD,DAD>
 media: autoselect (none)
 status: inactive
en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 88:63:df:c6:e2:dd
 inet6 fe80::875:2b7a:383c:7ffd%en1 prefixlen 64 secured scopeid 0x5
 inet 192.168.8.100 netmask 0xffffff00 broadcast 192.168.8.255
 nd6 options=201<PERFORMNUD,DAD>
 media: autoselect
 status: active
en2: flags=963<UP,BROADCAST,SMART,RUNNING,PROMISC,SIMPLEX> mtu 1500
 options=60<TSO4,TSO6>

 ether 0a:00:00:52:16:a0

• To Check whether jaga data is arriving.
>> sudo tcpdump –i en1 –l –n udp port 8888

The output should contain the line like below 192.168.8.100.55000: UDP, length 138

09:43:43.927404 IP 192.168.8.10.8888 > 192.168.8.100.55000: UDP, length 1388
09:43:43.970318 IP 192.168.8.10.8888 > 192.168.8.100.55000: UDP, length 1388
09:43:44.013281 IP 192.168.8.10.8888 > 192.168.8.100.55000: UDP, length 1388
09:43:44.056362 IP 192.168.8.10.8888 > 192.168.8.100.55000: UDP, length 1388

• JAGA device uses 8888 as our source port.

• Depending on your computer, it can be en1, or en0. Check the result of ifconfig.
• -l will suppress line buffer and will deliver data as soon as it comes in.
• -n will suppress reverse look –up for DNS

Acknowledgements for code contributors: Jordan Sorokin

